
26 The Delphi Magazine Issue 45

DCOM Deployment Secrets
by Roy Nelson

The deployment of applications
in our brave new intercon-

nected world is relatively easy.
Applications can be deployed and
installed using standard installa-
tion tools on traditional media or
more easily from a central internet-
accessible location, normally via a
web server. However, when it
comes to DCOM clients, they can
be deceptively easy to deploy but
frustratingly difficult to get them to
communicate with a DCOM server.

The problem lies somewhere
between standard DCOM opera-
tion and the blind use of the code
that the Delphi IDE generates to
instantiate the DCOM server. The
first sign of a long day ahead is
seeing the dreaded E_NOINTERFACE
error when a DCOM client tries to
instantiate a DCOM server with a
call to CreateRemoteCOMObject.
However, when you register the
DCOM server on the client
machine, the DCOM client can
miraculously be instantiated and
call the DCOM server on a different
machine! What is going on here?

Looking at the very simplified
steps that the DCOM subsystem
goes through when a DCOM client
tries to call a DCOM server through
a custom interface, it should
become clear what needs to be
done to make the system function
as we would expect. In Delphi you
would normally generate a dual
interface Automation COM object
as the DCOM server.

50 Ways To E_NOINTERFACE!
Here is a simplified sequence of
events when instantiating a DCOM
Automation server called from a
COM client.

1. The client tries to instantiate
the DCOM server with call to, for
example, CoCreateInstanceEx. In
the VCL this is implicitly called in
CreateRemoteCOMObject. The COM
server’s Class ID and the machine
name (where the COM server is
expected to be residing) are speci-
fied. However, CreateRemoteCOM
Object first requests an IUnknown
interface, as all COM objects will be
guaranteed to support it.

2. The CoCreateInstanceEx call is
converted to one or more RPC calls
to a server machine across the
network.

3. On the server machine, the
DCOM server is started by the
operating system and the IUnknown
interface pointer is packaged up
and returned.

4. Back in the DCOM client a valid
IUnknown interface pointer is
returned by the DCOM subsystem.

5. Next the DCOM client queries
the DCOM server by calling
QueryInterface for the custom
interface: normally the one you
created in the type library editor.

6. Next, the client DCOM system
will go through the following
checks to see if the custom inter-
face is known on the client
machine, for example that it has
been registered there. First, the

operating system will check to see
if the interface GUID (or, more cor-
rectly, the IID, or interface identi-
fier) exists under the
HKEY_CLASSES_ROOT\Interface key
on the local client machine. If it
does not exist, an E_NOINTERFACE
error will be returned. Then, if an
entry does exist for the interface,
the operating system has to find
out the layout of vtable for the
interface and what data needs to
be marshalled to and from the
DCOM server, amongst other
things. This is done by checking
for the type library GUID in the
Typelib key under HKEY_CLASSES_
ROOT\Interface. If this check fails,
an E_NOINTERFACE error will be
returned. Next the operating
system will check the HKEY_
CLASSES_ROOT\TypeLib key for a
GUID entry that corresponds to
the GUID just found, if the check
fails you will get an E_NOINTERFACE
error returned. Finally, if the type
library GUID was found, the oper-
ating system will check to see
where the type library is located,
under the HKCR\TypeLib\{GUID}\
1.0\0\win32 key: this contains the
filename and path where the physi-
cal type library is located. The type
library can be linked to an EXE, a
DLL, as a resource, or just as a
straight binary .tlb or .olb file.

7. Once the operating system
has access to the type library it will
call the server machine, where the
operating system will go through
something very similar to step 6. If
all is well the COM server will
return the valid interface pointer
and start servicing calls from the
client.

8. You might be wondering why
the operating system on the client
needs to have in-depth informa-
tion about the layout of the COM
server and interfaces. The reason
is that the operating system pro-
vides a system generated proxy
object (a local COM object that
looks and acts like the remote
object), which relays all calls to

Visual C++ Versus Delphi?
You might well ask why you never see Microsoft VC++ developers having these
problems... Well, they do, they just don’t realise it! For a custom interface COM
server, MSVC wizards and the MIDL compiler generate code for proxy and stub
DLL pairs. These DLLs contain the code to make the raw RPC calls to marshal the
data from the client to the server and back. This, of course, is extremely fast, as the
operating system does not need to manufacture its own proxy and stub, they
come neatly packaged in these DLLs. However, the same rules apply to these DLLs:
they also need to be registered on the client machine. Microsoft has found that
more people are actually not using the proxy and stub DLLs and have come up
with a new solution. This is to ‘pre-compile’ the IDL to byte code (referred to as
‘fast format strings’ in MIDL.HLP). This dramatically shrinks the size of the proxy
DLLs: with the Microsoft compiler you can merge the stub code into the COM
server. Don Box has described these format strings in his COM column in the Janu-
ary 1999 MSJ, the catch is these strings are undocumented by Microsoft.

May 1999 The Delphi Magazine 27

the remote COM server and does
all the required marshalling of data
between the server and client.

So now it should be clear why
registering the COM server on the
client all of a sudden allows the
remote DCOM server to be called.
So, as long as the server EXE (or
DLL if you use a DLL surrogate)
exists on the remote server, the
server will be callable from the
client. If the DCOM server is regis-
tered on the client machine and
then removed after being regis-
tered, a call will fail because the
type library (in the EXE) does not
exist on the client machine. The
custom interface’s description will
not exist on the client machine and
an E_NOINTERFACE error will occur.

Just imagine having hundreds of
client machines connecting to a
server machine using dial-up net-
working: it is just not feasible to
deploy both the COM client and
server, and register the COM
server on each of the client’s
machines. So, all we need is to have
the interface queried for by the
DCOM client to be known on the
client machine.

We can now see why Create
RemoteComObject returned a valid
IUnknown from the server object,
and the query (as IDemoAutoObj,
see Listing 1) for the requested
custom interface failed: because
the custom interface was not regis-
tered on the client.

Using a custom interface like this
is called early binding, as the inter-
face needs to known by the COM
client at compile-time and by the
operating system at runtime.

Solutions
Let’s look at various solutions we
could use to solve the deployment
problem, using a simple Delphi
generated automation object.
We’ll take the easiest solution first.

Because the DCOM server is
marked as an Automation object,
chances are that it has a dual
interface. That is to say, a custom
interface (IDemoAutoObj), and a
dispinterface (IDispatch derived
interface), or IDemoAutoObjDisp: see
Listing 1.

If a COM object supports an
IDispatch interface, it means that

{ Dispatch interface for DemoAutoObj Object }
IDemoAutoObj = interface(IDispatch)
['{F07F2941-4BF2-11D2-BBE0-0000C0B5D6A0}']
function Get_AMessage: WideString; safecall;
procedure Set_AMessage(const Value: WideString); safecall;
property AMessage: WideString read Get_AMessage write Set_AMessage;

end;
{ DispInterface declaration for Dual Interface IDemoAutoObj }
IDemoAutoObjDisp = dispinterface
['{F07F2941-4BF2-11D2-BBE0-0000C0B5D6A0}']
property AMessage: WideString dispid 1;

end;
{ DemoAutoObjObject }
CoDemoAutoObj = class
class function Create: IDemoAutoObj;
class function CreateRemote(const MachineName: string): IDemoAutoObj;

end;
...
class function CoDemoAutoObj.Create: IDemoAutoObj;
begin
Result := CreateComObject(Class_DemoAutoObj) as IDemoAutoObj;

end;
class function CoDemoAutoObj.CreateRemote(const MachineName: string):
IDemoAutoObj;

begin
Result := CreateRemoteComObject(MachineName, Class_DemoAutoObj) as
IDemoAutoObj;

end;

some of the COM object’s callable
methods can have a corresponding
dispatch ID. This dispatch ID is
used to call the corresponding
method, which is done by calling
the IDispatch’s Invokemethod with
the appropriate dispatch ID. This
mechanism is called late or ID
binding.

This second interface is nor-
mally also listed in the generated
Pascal file (XXX_TLB.PAS) as the
dispinterface. Because IDispatch is
a known (or canned) interface (eg
it is built into COM like IUnknown).
The operating system can find the
interface and it knows the vtable
layout of the IDispatch interface
without needing a type library,

CoDemoAutoObj = class
class function Create: IDemoAutoObj;
class function CreateRemote(const MachineName: string): IDemoAutoObj;

end;
...
class function CoDemoAutoObj.Create: IDemoAutoObj;
begin
Result := CreateComObject(Class_DemoAutoObj) as IDemoAutoObj;

end;
class function CoDemoAutoObj.CreateRemote(const MachineName: string):
IDemoAutoObj;

begin
Result :=
CreateRemoteComObject(MachineName, Class_DemoAutoObj) as IDemoAutoObj;

end;

➤ Above: Listing 1 ➤ Below: Listing 2

CoDispDemoAutoObj = class
class function Create: IDispatch;
class function CreateRemote(const MachineName: string): IDispatch;

end;
...
class function CoDispDemoAutoObj.Create: IDispatch;
begin
Result := CreateComObject(Class_DemoAutoObj) as IDispatch;

end;
class function CoDispDemoAutoObj.CreateRemote(const MachineName: string):
IDispatch;

begin
Result := CreateRemoteComObject(MachineName, Class_DemoAutoObj) as IDispatch;

end;

thus nothing needs to be regis-
tered on the client machine.

Although the type library editor
(in XXX_TLB.PAS) generates the
dispinterface, no corresponding
dummy class is generated to pro-
vide easy access to the IDispatch
interface. The easy access class for
the custom interface will have the
code in Listing 2 generated.

If we were to create our own
dummy class, as in Listing 3, so as
to call through the dispinterface,
by querying for the IDispatch
interface we would not need to
have the type library registered on
the client machine!

➤ Listing 3

28 The Delphi Magazine Issue 45

The DCOM server object can
now be called in two ways. The first
is by hard casting (the as operator
will force OS to search for IDemo
AutoObjDisp, which will fail) the
returned IDispatch pointer to an
IDemoAutoObjDisp interface pointer
(Listing 4). The second is by
assigning an IDispatch pointer to a
variable of type Variant (Listing 5).
This is possible because variants
can be used to call through an
IDispatch interface. Using the
Variant technique is slightly
slower than the IDispatch tech-
nique employed in the first option,
because the compiler has to work
some magic to make it possible (ie,
more code is generated).

procedure TForm1.Button1Click(Sender: TObject);
var ADemoAutoObj : IDemoAutoObjDisp;
begin
//Note this is a HARD cast. If we were to use the "as" operator a
//QI will result and the interface would not be found again!
ADemoAutoObj := IDemoAutoObjDisp(CoDispDemoAutoObj.CreateRemote('Obelix'));
Caption := ADemoAutoObj.AMessage;

end;

procedure TForm1.Button1Click(Sender: TObject);
var ADemoAutoObjVar : Variant;
begin
ADemoAutoObjVar := CoDispDemoAutoObj.CreateRemote('Obelix');
Caption := ADemoAutoObjVar.AMessage;

end;

➤ Above: Listing 4 ➤ Below: Listing 5

CoDispDemoAutoObj = class
class function Create: IDemoAutoObjDisp;
class function CreateRemote(const MachineName: string): IDemoAutoObjDisp;

end;
...
class function CoDispDemoAutoObj.Create: IDemoAutoObjDisp;
begin
Result := IDemoAutoObjDisp(CreateComObject(Class_DemoAutoObj) as IDispatch);

end;
class function CoDispDemoAutoObj.CreateRemote(const MachineName: string):
IDemoAutoObjDisp;

begin
Result := IDemoAutoObjDisp(CreateRemoteComObject(MachineName,
Class_DemoAutoObj) as IDispatch);

end;

procedure TForm1.Button1Click(Sender: TObject);
var ADemoAutoObj : IDemoAutoObjDisp;
begin
ADemoAutoObj := CoDispDemoAutoObj.CreateRemote('Obelix');
Caption := ADemoAutoObj.AMessage;

end;

➤ Above: Listing 6 ➤ Below: Listing 6a

As with most things that are
easy, there is a downside. When
late binding is used, the method
calls are generally slower than
when using the custom interface.

However, we do not have to use
variants. By moving the hard cast
into the class method call, the easy
access class’s code is as shown in
Listing 6. The calling code will now
look much cleaner (Listing 6a).

If you want all the speed you can
get then the only solution is to use
the custom interface.

So, to be able to use the custom
interface from a client, the IID must
exist in the HKEY_CLASSES_ROOT\
Interface key, the type library
GUID must be in the HKEY_CLASSES_
ROOT\Interface\Typelib key, the
type library GUID needs to be in

the HKEY_CLASSES_ROOT\Typelib key
and finally HKEY_CLASSES_ROOT\
Typelibneeds to contain the physi-
cal location of a file containing the
binary type library.

LoadTypeLibEx
Fortunately, the operating system
provides a very useful function for
registering type libraries: Load
TypeLibEx. This can register plain
binary type libraries or those
linked into EXEs and DLLs. Again I
would like to start with the sim-
plest scenario.

Option 1: deploy the type library
(.tlb) as a separate file with the
DCOM client application. All that
needs to be done is to call Load
TypeLibEx with the location of the
.tlb file before the DCOM server’s
interface pointer is obtained. In
the example code, Listing 7, it is
done in the OnCreate handler of the
client application’s main form.

This is quite an efficient way of
doing the deployment. Normally
.tlb files are small (a few Kb). How-
ever, we can add logic to first
check if the interface has previ-
ously been registered, to avoid
registering it again. The code to
call the DCOM server in the DCOM
client now looks more as it should,
see Listing 8.

Option 2: the .tlb file can also be
linked to a resource-only DLL as a
resource and registered by using
LoadTypeLibEx. The type library is
linked in as a resource using the
{$R} directive. The code for the
empty DLL is very simple, see List-
ing 9. This will generate a DLL of
approximately 20Kb in size. The
type library can be registered
again using the same code as in
Option 1 (see Listing 10). A draw-
back with this technique is that the
operating system only allows one
type library per DLL or EXE; so, if
your DCOM client makes use of
more that one DCOM server, you
would have to deploy a resource
DLL for each DCOM server.

Option 3: link the .tlb file to the
DCOM client itself. All that is then
needed is to call LoadTypeLibEx,
passing it the name of client EXE
itself! However, if you have your
own COM objects in the DCOM
client they might have their own

uses ComObj,ActiveX;
procedure TForm1.FormCreate(Sender: TObject);
var
//ITypeLib requires the ActiveX unit to be in the uses clause
pTypeLib : ITypeLib;

begin
//OleCheck(...) requires the COMObj unit to be in the uses clause
//LoadTypeLibEx(...) requires the ActiveX unit to be in the uses clause
OleCheck(LoadTypeLibEx('Demoauto.tlb',REGKIND_REGISTER, pTypeLib));

end;

➤ Listing 7

30 The Delphi Magazine Issue 45

procedure TForm1.Button2Click(Sender: TObject);
var ADemoAutoObj :IDemoAutoObj;
begin
ADemoAutoObj := CoDemoAutoObj.CreateRemote('Obelix');
Caption := ADemoAutoObj.AMessage;

end;

//Filename: EmptyDLL.DPR
library EmptyDLL;
uses Windows; // we only need to link in the bare minimum,

//this gives us the smallest possible DLL
//**IMPORTANT** Linking the type library in.
{$R DemoAuto.tlb}
begin
end.

➤ Above: Listing 8 ➤ Below: Listing 9

uses ComObj,ActiveX;
procedure TForm1.FormCreate(Sender: TObject);
var pTypeLib : ITypeLib;
begin
//OleCheck(...) requires COMObj to be in the uses clause
//LoadTypeLibEx(...) requires ActiveX to be in the uses clause
//uses ComObj,ActiveX;
OleCheck(LoadTypeLibEx('EmptyDLL.DLL',REGKIND_REGISTER, pTypeLib));

end;

//Link the typelibrary resource to the EXE. Make sure you EXE does not
//contain a COM server that also requires a type library
{$R DemoAuto.tlb}
procedure TForm1.FormCreate(Sender: TObject);
var pTypeLib : ITypeLib;
begin
//OleCheck(...) requires COMObj to be in the uses clause
//LoadTypeLibEx(...) requires ActiveX to be in the uses clause
//uses ComObj,ActiveX;
//Note how the client EXE itself is loaded to register the type library
OleCheck(LoadTypeLibEx(StringToOLEStr(Application.ExeName),
REGKIND_REGISTER, pTypeLib))

end;

➤ Above: Listing 10 ➤ Below: Listing 11

type library linked into the EXE,
thus you will not be allowed to link
in the DCOM server’s .tlb file. The
code is simple, see Listing 11.

Registering For Web Use
Probably the most contrived way
of getting a DCOM server .tlb file to
be registered is to link it to a DLL
but to make the DLL look as if it is
an in-process COM server (that is,
export all the functions for regis-
tering and unregistering). Most of
the code used in this example is

from the VCL and shows a different
way of registering a type library
using the operating system func-
tion RegisterTypeLib. The main
benefit of this technique is that the
DLL can be embedded in an HMTL
page, as a DLL or in a CAB file. This
makes it downloadable and
installable using a web browser
such as Internet Explorer 4.x.

The code is in two units that you
just need to link to an empty DLL
project containing a type library
resource. After you have compiled

and linked the DLL, the type library
contained within will be registered
when the DLL RegisterServer func-
tion is called and unregistered
when DLLUnRegister Server is
called. These functions are used
by Internet Explorer, most install
packages, and the built-in installa-
tion support in Windows.

The registration unit looks like
Listing 12 and contains the code
for all the exported functions. The
second unit contains the code
used to register and unregister the
type library: see Listing 13. All the
type definitions and imported
functions needed by this unit have
been declared in the unit, to mini-
mise the size of the DLL. The main
DLL code merely serves to link in
the above units (Listing 14).

Unregistering
The code to unregister the type
library is slightly more complex,
mainly due to the fact that it caters
for older versions of COM and OLE.
The type library is first loaded
using LoadTypeLib which returns
an ITypeLib interface. This is then
used to register the type library, or
to get the attributes of the type
library, using these to unregister
the type library. One important
thing is that a binary .tlb file can
also be passed to UpdateRegistry
Lib in the Listing 14 code, instead
of a DLL or EXE filename.

Considering the possible ways
in which we can solve the problem,
by far the easiest way is to use the
IDispatch technique. Very little
code needs to be changed, even
though the call might be ‘slow’, it
might be unnoticeable against the

unit registerunit;
interface
uses
ActiveX;

function DllRegisterServer: HResult;
function DllUnregisterServer: HResult;
function DllGetClassObject(const CLSID, IID: TGUID;
var Obj): HResult; stdcall;

function DllCanUnloadNow: HResult; stdcall;
//Export the functions for registration
exports

DllRegisterServer,DllUnregisterServer,
DllGetClassObject, DllCanUnloadNow;

implementation
uses
Registraunit;

function DllGetClassObject(const CLSID, IID: TGUID; var
Obj): HResult;

const
CLASS_E_CLASSNOTAVAILABLE = $80040111;

begin
Pointer(Obj) := nil;
Result := CLASS_E_CLASSNOTAVAILABLE;

end;
function DllCanUnloadNow: HResult;
begin
Result := S_FALSE;

end;
function DllRegisterServer: HResult;
begin
Result := UpdateRegistryLib(true, ModuleFileName);

end;
function DllUnregisterServer: HResult;
begin
Result := UpdateRegistryLib(false ,ModuleFileName);

end;
end.

➤ Listing 12

May 1999 The Delphi Magazine 31

unit Registraunit;
interface
uses ActiveX;
const
E_FAIL = $80004005;
S_FALSE = $00000001;
S_OK = $00000000;

type
HINST = Integer;
DWORD = Integer;
THandle = Integer;
HMODULE = HINST;
LPCSTR = PAnsiChar;
FARPROC = Pointer;

function UpdateRegistryLib(Register: Boolean; TypelibName:
string): HResult;

function ModuleFileName: string;
//These functions need to be here because of a bug in the
//D3 compiler/fixed in D4
function GetModuleFileName(hModule: HINST; lpFilename:
PChar; nSize: DWORD): DWORD; stdcall;

function GetModuleHandle(lpModuleName: PChar): HMODULE;
stdcall;

function GetProcAddress(hModule: HMODULE; lpProcName:
LPCSTR): FARPROC; stdcall;

implementation
const
kernel32 = 'kernel32.dll';

function GetModuleFileName; external kernel32
name 'GetModuleFileNameA';

function GetModuleHandle; external kernel32
name 'GetModuleHandleA';

function GetProcAddress; external kernel32
name 'GetProcAddress';

function ModuleFileName: string;
var Buffer: array[0..261] of Char;
begin
SetString(Result, Buffer, GetModuleFileName(HInstance,
Buffer, SizeOf(Buffer)));

end;

function UnregisterTypeLibrary(TypeLib: ITypeLib):HRESULT;
type
TUnregisterProc = function(const GUID: TGUID; VerMajor,
VerMinor: Word; LCID: TLCID; SysKind: TSysKind):
HResult stdcall;

var
Handle : Integer;
UnregisterProc : TUnregisterProc;
LibAttr : PTLibAttr;

begin
Handle := GetModuleHandle('OLEAUT32.DLL');
Result := E_FAIL;
if (Handle <> 0) and (Handle > 32) then begin
@UnregisterProc :=
GetProcAddress(Handle, 'UnRegisterTypeLib');

if @UnregisterProc <> nil then begin
Result := TypeLib.GetLibAttr(LibAttr);
if Result = S_OK then begin
with LibAttr^ do
Result := UnregisterProc(guid, wMajorVerNum,
wMinorVerNum, lcid, syskind);

TypeLib.ReleaseTLibAttr(LibAttr);
end;

end;
end;

end;
function UpdateRegistryLib(Register: Boolean; TypelibName :
string): HResult;

var TypeLib: ITypeLib;
begin
Result :=
LoadTypeLib(StringToOLEStr(TypelibName), Typelib);

if (TypeLib <> nil) and (Result = S_OK) then
if Register then
Result := RegisterTypeLib(TypeLib, StringToOLEStr(
TypelibName), StringToOLEStr(TypelibName))

else
Result := UnregisterTypeLibrary(TypeLib);

end;
end.

//FileName: RegisterDLL.DPR
library RegisterDLL;
uses
registerunit in 'registerunit.pas',
Registraunit in 'Registraunit.pas';

//**IMPORTANT** Add any type library file in here to be linked in.
{$R Demoauto.tlb}
begin
end.

➤ Above: Listing 13 ➤ Below: Listing 14

Out Of Process Problems
When developing custom COM objects derived from IUnknown, you
might have found that you cannot place the COM object in an EXE
(out of process) server, or calling the COM object on different threads.
Whenever you try to access the COM object you get an ‘interface not
supported’ error. Well, the main issue is that the data cannot be mar-
shalled because, firstly, you do not have your own proxy and stub
DLLs, or secondly, you have implemented your own custom marshal-
ling to marshal data. Thankfully, there is a way out: yes, you guessed
it, type libraries. When you create an automation object the marshal-
ling of data and the interface is handled by the Universal marshaller
or Automation marshaller. Normally an Automation object is derived
from IDispatch, however, a COM object does not need to be derived
from IDispatch to get the benefit of the Universal marshaller. All that
is needed is that the COM object is marked as supporting Automa-
tion, that a type library is available to describe the interface, and the
data used by the interface. In the type library editor setting the OLE
automation flag on for the COM object’s interface does this. There
are caveats: normal COM rules apply, the method uses stdcall, so no
more safecall, and all the methods have to return an HRESULT, so out
parameters have to be used to return values to a caller.

time it takes for the network
request to be completed. It is easy
to adapt the code to create a small
generic installer, which reads and
installs type libraries. A sample
wizard is included on the disk,
which will register and unregister
type libraries contained in EXEs,
DLLs or normal .tlb files. There is
also a modified version of Create
RemoteCOMObject, which queries for
IDispatch instead of IUnknown.

Conclusion
Hopefully this article will help you
avoid some of the more puzzling
and painful experiences of DCOM.
The concepts are simple, but not
well documented. One word of
warning: as soon as you get your
client talking to the server other
issues (especially security) will
start to arise, but these will have to
wait for another time.

Roy Nelson (aka Mzwanele, email
rnelson@borland.com) is a Tech-
nical Consultant at Inprise UK and
the founder of beerware: if any
beerware code snippets help you,
payment is a beer when you meet
me in a pub somewhere.
Copyright © 1999 Roy Nelson

Developers Review: NEW Reviews Online at www.itecuk.com

	50 Ways To E_NOINTERFACE!
	Visual C++ Versus Delphi?
	Solutions
	LoadTypeLibEx
	Registering For Web Use
	Unregistering
	Out Of Process Problems
	Conclusion

